Customer Statistical Information Pack

Total Reach*

1,556,615

Total Engagement**

571,082

* Total Reach – combined reach of all products where your content appeared
** Total Engagement across all products where your content has appeared (digital editions, website and email newsletters)
E-Cigarettes: Different But Not Safe

The pressing need to assess the health risks of e-cigarettes in the face of rising teen use

Total Reach*

142,792

Total Engagement**

6,971

Email Opens

6,141

Edition Engagement

830

* Total Reach figure is the distribution for this edition of your ebook
** Total Engagement of the ebook content (email opens, PageSuite and HTML pageviews and Social Media activity (if applicable))
An emerging environmental health concern: Impacts of air pollution on the brain

An environmental health concern: Impacts of air pollution on the brain

Email Opens
14,440

Edition Engagement
154,685

Client Pageviews
2,520

* Total Reach figure is the distribution for this edition of the publication
** Total Engagement of the publication content (email opens, PageSuite and HTML pageviews and Social Media activity)
SEARCH RESULTS:

IMPACTS OF AIR POLLUTION ON THE BRAIN

ORGANIC SEARCH

Air pollution is known to affect small and large brain areas throughout the body. High levels of air pollution are associated with increased risk of asthma and heart disease. It has been consistently reported that children are more sensitive to the effects of air pollution than adults. Air pollution has been linked to cognitive development and has been linked to neurodegenerative diseases. Some studies have suggested air pollution is linked to an increased risk of depression and anxiety disorders. The brain can be damaged by air pollution exposure, leading to increased risk of brain damage and cognitive decline. The long-term effects of air pollution on the brain remain unclear, but the risk is likely higher in young children and the elderly. Air pollution can cause damage to the brain by increasing the risk of brain cancer and other neurological diseases. The brain is highly sensitive to air pollution, but there is still much research needed to understand the full extent of the effects.
The potential long-term environmental health consequences of urban wildfire debris

Birgit Puschner and Pamela Lein from the University of California, Davis share their expert views on the impacts of urban wildfires on health and environmental health.

In conclusion, the increase in wildfires is increasing due to changes in climate conditions and is particularly acute in Northern California, where wildfire frequency over the past few decades has been increasing. In addition to the risk of injury, loss of property, and destruction of life and property, there is strong evidence that wildfire smoke and recent reviews of scientific literature conclude that wildfire smoke and recent reviews of scientific literature conclude that the potential long-term environmental health implications of this scientific literature conclude that the potential long-term environmental health implications of wildfire smoke and recent reviews of scientific literature conclude that wildfire smoke exposure can exacerbate respiratory ailments, particularly asthma and chronic obstructive pulmonary disease and other health threats.

The potential long-term environmental health implications of wildfire smoke exposure can exacerbate respiratory ailments, particularly asthma and chronic obstructive pulmonary disease, and can lead to significant long-term environmental health threats. Moreover, the release of toxic chemicals into the environment can result in the transfer of these contaminants into the soil, vegetation, and water, and can lead to the contamination of home-grown produce or animal products.

Email Opens
18,139

Edition Engagement
82,350

Client Pageviews
212

* Total Reach figure is the distribution for this edition of the publication
** Total Engagement of the publication content (email opens, PageSuite and HTML pageviews and Social Media activity)
SEARCH RESULTS:

HEALTH AND WILDFIRE DEBRIS

ORGANIC SEARCH
Pesticides: A contributing factor to the increase in asthma?

Pamela J. Lein at the University of California, Davis discusses the evidence suggesting that pesticides are the factors for asthma.

Organophosphates (OPs) are widely used in agriculture for insect control. However, the potential adverse health effects of OPs on non-target organisms, including humans, have gained increasing attention. Exposures to OP pesticides are associated with occupational asthma, and recent studies have suggested a link between agricultural asthma and non-occupational asthma.

Asthma is a chronic inflammatory lung disease, characterised by episodic and reversible bronchial obstruction, which is manifest by symptoms such as wheezing, coughing, and difficulty breathing. Asthma affects millions of people worldwide and is a major cause of morbidity and mortality, particularly in children and adults.

Inhaled allergens, air pollution, and respiratory infections are the primary known triggers of asthma. However, environmental factors such as indoor and outdoor pollutants, cigarette smoke, and allergens have received increased attention in recent years. Environmental pollutants, including pesticides, have been found to contribute to asthma exacerbations.

OPs are a class of pesticides that inhibit the enzyme acetylcholinesterase, which functions to inactivate acetylcholine. This enzyme is crucial for maintaining normal nerve function, and its inhibition can lead to the development of cholinergic crisis, characterized by respiratory failure and death.

Recent epidemiologic data have provided the first indication that OP-induced asthma may not be limited to agricultural-related asthma. Studies have shown that the airway response to OPs is distinct from that caused by other environmental factors. The use of acetylcholinesterase inhibitors, such as organophosphates, is widespread and can lead to widespread exposure.

Agricultural fields sprayed with OPs can become heavily contaminated, with subsequent dermal absorption and inhalation exposures. The general population is at risk for OP contamination from agricultural activities, despite being considered an insignificant source of exposure as compared to occupational workers.

While systematic reviews of the published epidemiologic literature have not been able to establish a definitive cause-effect relationship between OP pesticide exposure and asthma, recent studies have shown an increased prevalence of asthma and asthmatic symptoms in children exposed to agricultural pesticides. This highlights the need for further research to accurately quantify OP exposure in humans.

Unfortunately, quantifying OP exposure is challenging due to the environmental persistence of OPs and their ability to reach remote locations. In addition, the use of OPs is widespread, with diminishing returns on the production, distribution, and use of these pesticides.

More recent epidemiologic data have demonstrated a significant increase in the prevalence of asthma and allergic respiratory symptoms in children living in communities near agricultural fields sprayed with OPs. These findings suggest the possibility that OPs cause airway hyperreactivity, which may lead to asthma.

OP-induced airway hyperreactivity can be triggered by a single injection of an OP, and this effect persists for at least seven days after exposure. This hyperreactivity is accompanied by increased acetylcholine levels and is mimicked in animal models. Interestingly, pesticides structurally and mechanistically distinct from OPs do not induce airway hyperreactivity.

In summary, while the evidence is not conclusive, the findings suggest a potential link between OP exposure and asthma. Further research is needed to accurately quantify OP exposure and to identify subpopulations that may be at increased risk. Identifying these factors will be critical for designing strategies to prevent or reverse the effects of OP exposure on asthma.

http://www.vetmed.ucdavis.edu/lein-lab/
Total Reach* 105,376
Total Engagement** 89,088

Polychlorinated biphenyls (PCBs): A persistent environmental health problem

Email Opens 16,583
Edition Engagement 72,217
Client Pageviews 228

* Total Reach figure is the distribution for this edition of the publication
** Total Engagement of the publication content (email opens, PageSuite and HTML pageviews and Social Media activity)
POLYCHLORINATED BIPHENYLS (PCBs) AND HEALTH

Polychlorinated biphenyls (PCBs) are a group of chemicals that have been used in various industrial applications, such as dielectric fluids, heat transfer fluids, and transformers. They are also found in the environment as a result of production, use, and disposal activities. Exposure to PCBs can occur through inhalation, ingestion, or skin contact.

Health effects of PCB exposure can include neurological, developmental, immune, and reproductive issues. Long-term exposure to high levels of PCBs can lead to serious health problems such as cancer, liver damage, and neurological disorders.

Regulations and guidelines have been established to limit the use and disposal of PCBs. The USEPA and other environmental protection agencies have set standards for the amount of PCBs that can be released into the environment. Treatment and disposal of PCB-contaminated materials must be conducted by licensed professionals.

Organizations like the USEPA and the World Health Organization provide resources and information on PCBs and their health effects. It is important to stay informed about PCBs and their impact on human health for effective risk management and prevention.

Searches related to Polychlorinated biphenyls (PCBs) and health:
- PCBs and health effects
- PCBs in food
- PCBs in water
- PCBs and the environment
- PCBs and cancer
Are environmental chemicals contributing to the obesity epidemic?

A group of experts from the University of California, Davis and the University of Southern California argue that environmental chemicals contribute to obesity.

Are environmental chemicals contributing to the obesity epidemic?

In support of the obesogen hypothesis, environmental chemicals can increase adipose cell number and/or size, contributing to obesity. For example, triphenyltin (TBT) increases the number and/or size of fat cells, known as adipocytes. Cell culture experiments modeling different exposure conditions have shown that environmental chemicals can increase lipogenesis and triglyceride content in adipose tissues and the liver compared to control conditions.

Consistent with these observations, tributyltin (TBT) increases the number and/or size of fat cells, known as adipocytes. Cell culture experiments modeling different exposure conditions have shown that environmental chemicals can increase lipogenesis and triglyceride content in adipose tissues and the liver compared to control conditions.

Recent studies in mice have shown that the hypothalamus is a region of the brain that monitors and responds to changes in the body’s hormonal and metabolic status. Inflammation in the hypothalamus, which can interfere with hypothalamic homeostasis, and disruption of the receptors involved in appetite regulation affects adults, children and infants, as well as increasing the risk of obesity.

Environmental chemicals can increase inflammation in the hypothalamus, which can interfere with hypothalamic homeostasis and disrupt the receptors involved in appetite regulation. This can contribute to obesity.

Email Opens

15,619

Edition Engagement

67,349

Client Pageviews

316

* Total Reach figure is the distribution for this edition of the publication

** Total Engagement of the publication content (email opens, PageSuite and HTML pageviews and Social Media activity)
DIGITAL CONTENT

Banner on Health page
from January 2018

Reach*
477,840

Engagement**
514

*Reach figure is the audience for the pages where your banner has appeared since it went live
**Engagement is the number of clicks your banner has received

Stakeholder page
from January 2018

Engagement**
91

**Engagement is the number of views your stakeholder page has received

Special Report – Developmental neurotoxicity testing – the need for a new approach
from June 2018

Engagement**
164

**Engagement is the number of views your special report page has received

Special Report – E-Cigarettes: Safer But Not Safe
from September 2018

Engagement**
1,444

**Engagement is the number of views your special report page has received
All viewing and visitor stats provided by Adjacent Digital Politics Limited are guaranteed and correct at the time of the report. They are compiled using industry leading organisations and aids such as PageSuite and Google Analytics. The company is strongly committed to under-promising and over-delivering on its distribution figures and has an anti-spamming policy complying with data protection advice and legislation. The company endeavours to ensure its distribution data is of the highest quality in relation to cleanliness and relevance – this is supported by its low bounce rates and low un-subscribes.

The company does not offer expected viewing or visitor numbers either at, or following, the point of sale and does not accept any responsibility for open rates or interaction between the recipient and the advertiser. The advertiser is strongly advised to monitor all visitor data to its website and social media profiles to ensure that the marketing exercises undertaken are not wasted. We also encourage the advertiser to work closely with the company’s production and copy writing team to ensure the messages being distributed are written to their optimum level thereby maximising the chances of creating an impact.