Home Genetic Research

Genetic Research

Genomic analysis visualization. Dna genomes sequencing, deoxyribonucleic acid genetic map and genome sequence analyze. Bioinformatics forensics data or dna radiographic testing vector concept

Artificial intelligence (AI) tools in genetics

Vessela Kristensen and Dag Undlien uncover AI tools in genetics, from variant recognition to clinical implementation.
Figure 1. The reflexivity of AARS genes and the challenges of understanding its origin. The figure illustrates three main challenges. (I) We must construct a bidirectional gene (salmon background) that uses a minimal amino acid alphabet to encode ancestral AARS from Classes I and II on opposite strands. Polypeptide and nucleic acid sequences have directions indicated by (N,C) and (5’,3’). The genes are sequences of codons (colored ellipses) and use only two types of amino acids, A and B. (II) We must show that both coded proteins (I and II) fold into active assignment catalysts that recognize both amino acid and tRNA (colored letters, ellipses in cavities), producing (mostly) aminoacyl-tRNAs with correct amino acids and anticodons. (III) We have to show that the aminoacylated RNAs can assemble onto messenger RNAs (I) and (II), transcribed from the bidirectional gene (reversed dashed arrows).

Structural biology research and the origins of genetic coding

Charles W. Carter, Jr, Department of Biochemistry and Biophysics, University of North Carolina Chapel Hill, reviews the ways that recent research in Structural Biology, Biochemistry, Molecular Biology, and Phylogenetics have opened the origins of genetic coding to experimental study and their important implications.
Digitally generated image, perfectly usable for all kinds of topics related to digital innovations, AI, data processing, network security or technology and computer science in general.

Flame system: Computerised cognitive assessment for remote brain health monitoring

Monitoring brain health, particularly cognition, in older adults is increasingly recognised as a significant priority for research, healthcare and broader public health. Find out here about the development and validation of the FLAME System, a computerised cognitive assessment for remote brain health monitoring.
Sunlit tree canopy in tropical jungle, forest genetic diversity

Protecting genetic diversity to benefit nature and society

There are three ways that governments and other conservation actors at all levels can monitor and protect genetic diversity, supporting the attainment of biodiversity goals and targets. But first, what is genetic diversity, and is there potential to safeguard it better?

Engineered endosymbionts as novel cancer therapeutics

Satyajit Hari Kulkarni and Christopher H. Contag from the Institute for Quantitative Health Science and Engineering focus on engineered endosymbionts, which they argue is a paradigm shift in anticancer bacteriotherapy toward killing tumors from the inside out.
Figure 1: The central nervous system (CNS) is protected from mechanical injury by the skull (A) and from chemical noxious agents by the blood-brain barrier (B, C). The latter consists of the endothelial barrier in most parts of the CNS (B) and the tanycytic barrier in the hypothalamus (C). We develop gene vectors transducing endothelial cells and tanycytes to treat genetic and non-genetic diseases of the brain.

Bridging brain barriers for gene therapy

Reflecting on the challenges in treating brain diseases, this article explores ways to transduce the blood-brain barrier as well as the critical role of tanycytes as a target for gene therapy vectors.
Alternative flipon conformations compared to Watson and Crick DNA are displayed in the left panel. Flipons offer a new way to program the genome

RNA and DNA flipons in health and disease

Flipons are the next step in DNA research. What they are, their role in DNA and RNA coding, their impact on medical science, and their relation to the immune system are discussed here.
Antibody binding to human cell receptors is a crucial aspect of the immune response and plays a fundamental role in various physiological processes, including immune defense, signaling, and regulation of cellular functions. Antibodies, also known as immunoglobulins, are proteins produced by the immune system in response to the presence of foreign substances, such as pathogens or abnormal cells.

High-resolution snapshots of antibody repertoires as potential correlates of protection

Klaus Eyer from ETH Zurich describes high-resolution snapshots of antibody repertoires as potential correlates of protection.
Figure 1. Elements of the operational RNA code in the tRNA acceptor stem. A. Bases in the tRNA acceptor stem encode two aspects of amino acid physical chemistry—size and polarity—that determine protein folding. B. Acceptor stem bases preceded the anticodon stem-loop and code other properties. C. The oldest parts of Class I and II AARS could already discriminate between both amino acid and RNA substrates (6) .

tRNA: The operational RNA code and protein folding

Charles W. Carter, Jr., from the Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, relates molecular recognition used in genetic coding to structures of aminoacyl-tRNA synthetases and their cognate tRNAs.
A group of antibiotic pill capsules fallling. Healthcare and medical 3D illustration background.

Drug repositioning using multiple gene expression profiles

Chuo University’s Professor Y-h. Taguchi places focus on drug repositioning using multiple gene expression profiles
A scientist using a pipette with a microtiter plate and a petri dish

AI and modern experimental biology: A historical perspective

Ute Deichmann, Director of the Jacques Loeb Centre for the History and Philosophy of the Life Sciences at Ben-Gurion University of the Negev, discusses the adoption and limitations of Artificial Intelligence within modern experimental biology.
Colored Genetic Code DNA Molecule Structure

Personalized medicine: “Tyranny of the gene”

Dr Priya Hays, Ph.D., CEO/Science Writer at Hays Documentation Specialists, LLC, responds to “Tyranny of the Gene.” Is personalized medicine a threat to public health? Not really, but yes, it’s an argument for price controls and perhaps more regulations; we hear.
Tumor microenvironment concept with cancer cells, T-Cells, nanoparticles, cancer associated fibroblast layer of tumor microenvironment normal cells, molecules, and blood vessels 3d rendering

Understanding T lymphocytes inner workings to harness therapeutic potential

Leslie J. Berg, PhD from the University of Colorado, Anschutz School of Medicine, sheds light on understanding the inner workings of T lymphocytes to harness their therapeutic potential.
blue water mirror. abstract background of rippled water surface

Harnessing redox power for biotechnological application in purple non-sulphur bacteria

Here we explore purple non-sulfur bacteria (PNSB) and some of its biotech applications, with a focus on how these applications have been enhanced by manipulating the flow of reducing power.
Figure 1: Immunofluorescent image of OVCAR3 cells in culture showing that cells are at different stages of the cell cycle. P53 (green) is nuclear in all cells that are not dividing, including PGCCs that are multinuclear (a) and (b). PGCC during abnormal cytokinesis (c). P53 is redistributed in cells undergoing normal mitosis where the condensed chromosomes are either at the midbody (d) or are undergoing cytokinesis (e). (1)

Controlling ovarian cancer: An introduction to detection and treatment

With current strategies proving inadequate, what needs to be done is to further the research into detecting, treating, and controlling ovarian cancer.
3d illustration of molecule model. Science background with molecules and atoms

Probing the individuality of cells and molecules

Sotaro Uemura, Professor at the University of Tokyo, probes the individuality of cells and molecules.

Options for stroke survivors: From stroke to conventional therapy

Discovery of novel treatment options for stroke survivors – requirements for implanted systems.
Brain activity,Human brain damage,Neural network,Artificial intelligence and idea concept

Innovative gene therapy approaches for brain tumour-related epilepsy

Professor Mark Cunningham and Dr Kate Connor from Trinity College Dublin discuss the burden of brain tumour-related epilepsy and why novel therapies are urgently needed to improve the quality of life for those affected.
Lijuan Yuan with Gn pig jpg

Gnotobiotic pig models: Illuminating the enigma of human norovirus infection and immunity

Dr Lijuan Yuan and her team have studied human noroviruses (HuNoV) in gnotobiotic pigs for over 15 years. Here, she explains how such research is advancing our understanding of HuNoV pathogenesis, infectivity, and immunity.
Pills On Yellow Background, symbolising drug repositioning

Can we do drug repositioning without disease gene expression?

Chuo University’s Professor Y-h. Taguchi examines the application of cutting-edge single-cell-based measurements in drug repositioning.

Follow Open Access Government