The Evolution of the Novel Antibacterial Drug, MGB-BP3

Future therapeutic targets: Trypanosoma (sleeping sickness), Plasmodia (malaria)

Melanoma and hepatitis C virus

2013: MGB-Biopharma obtains approval for clinical trials of BP3 for Clostridium difficile infections. Developments continue for other infections.

2010: Preclinical development programme begins with MGB-Biopharma, a new Scottish company supported by SE and Scottish angel syndicate funds.

2004-10: University of Strathclyde continues to support project with royalties from Leucovorin, a commercialisation success of the 1990s.

2006: Key UK patent for BP3 filed, now granted internationally.

2003: First synthesis of the drug, BP3, (above centre) by Dr Abedawn Khalaf; its exceptional antibacterial activity is shown in next 2 years.

2002-4: Scottish Enterprise Proof of Concept funds the drug discovery project.

2001: The Strathclyde team decides how to improve on distamycin by planning a better fit to DNA. Synergy Fund (Strathclyde and Glasgow Universities) finances research. Thiazotropsin A is the first designed and substantially improved compound.

2004: The properties of thiazotropsin A published.

2003: First synthesis of the drug, BP3, (above centre) by Dr Abedawn Khalaf; its exceptional antibacterial activity is shown in next 2 years.

1961: Distamycin discovered by Arcamone in Italy from Streptomyces distallicus; it has significant biological activity but is toxic and unselective.

Contact: c.j.suckling@strath.ac.uk