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In this paper, Professor Dane Morgan and Research Scientist Ryan
Jacobs, from the University of Wisconsin, Madison, discuss their
adventures in the field of machine learning in the areas of
materials science and engineering

This paper gives a very brief and inevitably biased overview of machine learning (ML) in
Materials Science and Engineering (MS&E), with examples taken from our own work with
collaborators. We hope it conveys our excitement about the extraordinary potential of this
new area of research.

MS&E focuses on developing materials with desired properties. It has led to materials
innovations that underlie much of modern society, from the transistors in computers to the
batteries in cars and smartphones. In recent decades, major advances in algorithms,
computing power, and data access have made ML tools extremely powerful.

Our group and many others are exploring how ML tools can be used to enable new
MS&E research and accelerate the process of materials discovery and optimization. ()
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Figure 1: Estimation of publications per year that use
machine learning in materials science and
engineering. Based on data from Web of Science.

1/4


https://www.openaccessgovernment.org/article/exploring-the-role-of-machine-learning-in-materials-science-and-engineering/167344/

Figure 1 shows the approximate publication rate of papers on ML and materials science
and engineering.

Two significant inflections can be seen in the data, which we speculate may relate to the
popularization of data- centric thinking and funding opportunities that arose around the
successful sequencing of the human genome in 2000, and then the nearly simultaneous
adoption of the Materials Genome Initiative (MGI) in 2011 and the breakout success of
deep learning in the ImageNet Large Scale Visual Recognition Challenge in 2012
(ILSVRC2012).

The role of ML in materials science and engineering

It is helpful to organize the role of ML in MS&E around three broad categories (i) property
predictions, (ii) data-driven models, and (iii)) machine interpretations.

Category (i) uses patterns in existing materials data to make property predictions on new
materials, e.g., to guide future experiments or increase database sizes.

As an example in this category, we have worked with collaborators to develop models that
predict radiation embrittlement of nuclear steels from their composition and irradiation
conditions @) [Figure 2(a)]. Our MAterials Simulation Toolkit — Machine Learning (MAST-
ML) largely automates developing a wide range of such ML models, including uncertainty
quantification, and is accessible for even novice users. )

Category (ii) refers to using data-driven ML models to reduce the needs for, or even
replace, physics-based models. An outstanding example in this category are ML
interatomic potentials (MLIPs), which can be trained to reproduce the key physics of
atomistic processes on length and time scales thousands to millions of times larger than
traditional fully quantum approaches. MLIPs are expected to enable many transformative
applications, from designing better drugs to improving batteries. We have worked with
collaborators to use MLIPs to model difficult-to-measure properties of molten salts useful
for next-generation nuclear reactors ) [Figure 2(b)].

Category (iii) refers to using ML to characterize and analyze data (typically in the form of
images or text) of relevance for materials science and engineering, generally attempting
to replace tasks that are inefficient or impossible for humans to do well. As an example of
this category, we have worked with collaborators to develop deep learning machine vision
models that can automatically find radiation damage defects in electron microscope
images of irradiated metals ©®) [Figure 2(c)], allowing orders of magnitude more defects to
be studied than previous human-based approaches.

We expect these tools to provide a qualitative change in our ability to understand
radiation effects and eventually help design materials for safer and cheaper nuclear
fission and fusion reactors. Another example is our work demonstrating that simple
screening and careful prompt engineering can allow large language models to extract
materials property data from millions of papers with almost no human effort ), opening
the door to unprecedented levels of rapid data extraction and analysis.
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Figure 2: Prediction of (a) radiation embrittlement driven temperature shift in an irradiated steel (image
made from similar models to those in Liu, et al.(3)), (b) molten salt viscosity (modified from original
image in Attarian, et al.(4)), (c) locations of defects in an irradiated steel (reprinted from Jacobs, et al.

().

Exploring machine learning opportunities

The MS&E community is still in the early stages of developing the opportunities for ML,
and we expect that continued improvements in ML and exploration in MS&E will lead to
many further innovations. One exciting vision for the future of MS&E is what we call
Integrated Computational and Materials Engineering (ICME) v2.0, where an artificial
intelligence (Al) agent uses ML to guide autonomous experiments and computational
modeling, and extract data from many varied sources.

This Al could then perform scalable autonomous materials discovery and optimization,

dramatically accelerating our ability to improve human welfare by developing new
materials.
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