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In the previous article, I argued that advancing data integration in

neuroscience requires incorporating resting-state spontaneous

activity into each experiment, framing it as ‘adhesive dots.’ Here, I

extend that discussion by drawing strategic lessons from the

success of large language models (LLMs) and by concretizing the

earlier claims from the perspective of data

What LLMs can teach us about data integration?

The worldwide construction of data centers illustrates how AI development has advanced

through scaling – expanding data volume, model size, and computational resources. LLM

performance improves according to power-law scaling when all three expand together. 

Furthermore, scaling model size and dataset size in tandem has been shown to be near-

optimal. 

Yet progress has required more than scale: cleaning and curation have been equally

crucial. GPT-3 demonstrated the power of large-scale training with filtered Common

Crawl,  and T5 achieved major improvements by building the C4 dataset after

aggressively removing duplicates and low-quality text.  PaLM 2 also reported the

significant impact of data quality.  On the other hand, concerns have been raised about

the potential exhaustion of high-quality web text,  and partly motivated by applications

such as edge AI (the concept of running AI on devices or chips), efficiency efforts such as

Mixture-of-Experts (MoE) and compact models are also being pursued in parallel.  In

short, AI has advanced through scaling and curation, while efficiency has also evolved

along a complementary path.

Current landscape and challenges in neuroscience

By contrast, neuroscience has yet to fully address the ‘limits of data accumulation’ or the

‘optimization of modeling.’ Advances in optical methods, such as two-photon calcium

imaging, now enable large-scale simultaneous measurements at single-neuron resolution.

Recently, functional data spanning multiple fields of view have been integrated with EM

connectomics, yielding analyses on the order of 75,000 neurons in total – marking major

progress. 

The greater challenge, however, lies in behavioral and environmental diversity. Laboratory

experiments still focus largely on ‘screen-based stimuli’ and ‘controlled tasks.’ Although

natural scene stimuli are increasingly employed,  real-world contexts are far harder to
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reproduce. Consider sudden crowd surges in a train station, unexpected issues at

immigration control, or nighttime evacuation after a major earthquake with power outages

and aftershocks. Such scenarios are common in life, but even if reproduced and

recorded, the resulting datasets would be rare and highly specialized. Thus, it becomes

essential to examine how such data – naturally incorporating individual differences – can

be meaningfully connected to others.

This contextual diversity makes integration particularly difficult. Unlike web text, which is

relatively static and independent at scale, neural time-series data are strongly influenced

by arousal, attention, individuality, apparatus, and surrounding environment. Therefore,

standardized and shareable frameworks (NWB, BIDS, DANDI, OpenNeuro),  together

with detailed metadata such as illumination, arousal state, and behavioral logs, are

indispensable.

Figure 1. Relationship between spontaneous activity and task-related activity

Spontaneous activity states (Spon.1, Spon.2) represent the baseline states before the

task. For simplicity, they are depicted as points in this figure, but in reality they are

temporally fluctuating dynamics. Conventionally, analyses have been limited to

quantifying the changes Δ1 and Δ2 in post-task activity (Aft.Task1, Aft.Task2) relative to

each spontaneous state, without considering the relationship between Spon.1 and

Spon.2. If the two differ substantially, comparing only Δ1 and Δ2 is insufficient to properly

discuss task effects. Therefore, understanding the relative relationship between

spontaneous states is essential, and this figure illustrates the necessity of comparing

baseline states in addition to observing differences.
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The Idea of a ‘ten-minute spontaneous activity’ baseline

As a realistic step, I have proposed adding a ‘ten-minute spontaneous activity’ segment to

each experiment. Spontaneous activity provides a statistical foundation less constrained

by specific tasks or environments, reflecting arousal, attention, and individuality while

serving as the substrate for task-evoked activity. This has been supported by findings

from both human fMRI and mouse research. 

Moreover, resting brain activity exhibits scale-free long-range correlations lasting minutes

to tens of minutes.  A ten-minute window thus captures the key temporal scales while

remaining feasible as a unifying standard across laboratories. Longer recordings are, of

course, preferable, but a two-step strategy – first establishing a ten-minute baseline and

then extending it for refinement – is the most pragmatic approach.

Attaching this “ten-minute spontaneous activity” baseline forms the “adhesive dots” (as

described in a previous article), enabling cross-comparison across studies (Fig.1).

This is not an abstract ideal: the role of resting-state structure as a foundation for

interpreting and predicting task responses has been empirically demonstrated. 

Definitions and non-stationarity of spontaneous activity

The definition of spontaneous activity differs across species and paradigms. In humans, it

is typically defined as an ‘eyes-open, fixation-rest state,’ whereas in animals it is

categorized as ‘head-fixed, task-free’ or ‘freely moving without tasks.’ Importantly,

spontaneous activity is not a static point, but a fluctuating dynamic influenced by arousal

and microenvironmental factors. Thus, detailed metadata are indispensable. Notably, the

diversity within spontaneous activity is far smaller than the vast diversity of tasks and

environments.

This – the “Principle of External Complexity” – highlights that in situations like crowded

trains or large gatherings, where one brain is surrounded by dozens or even thousands of

other brains, environmental complexity can easily exceed an individual’s internal

complexity, making neural data integration difficult. Focusing first on the limited variability

of spontaneous activity provides AI with a practical intermediate target for translation and

alignment.

A bridge to the next article

The key lesson from LLMs is that breakthroughs emerged not from scaling alone but at

the convergence of scaling, curation, and efficiency. In neuroscience, progress likewise

requires addressing not only the expansion of neuron counts but also the challenge of

behavioral and environmental diversity. As a preparatory step, standardizing the inclusion

of a “ten-minute spontaneous activity” segment in each experiment – curated and shared

as adhesive dots – would provide a common foundation for integration. This article has
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emphasized data-side strategies; the next will examine how AI can serve as the glue,

through representational mapping and transformation learning, to connect fragmented

datasets into a coherent understanding.
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